Lecture 10

Lecture 10

Clustering

Informal definition

Formal Objective

Alternating minimization

Alternating minimization: Closer look

k-means algorithm

k-means algorithm: convergence

k-means algorithm: how to initialize?

Local vs Global minima

Summary

Gaussian Mixture Model and EM Algorithm

Intuition

GMM: Formal definition

Learning GMMs

Preview of EM for learning GMMs

EM Algorithm

Jensen's inequality

A lower bound on the log likelihood

Alternatively maximizing the lower bound

General EM algorithm

Applying EM to learn GMMs

Clustering

Informal definition

Given: a set of data points (feature vectors), without labels.

Output: group the data into some clusters, which means

- assign each point to a specific cluster
- find the center (representative/prototype/...) of each cluster

Given: data points $x_1, \cdots, x_n \in \mathbb{R}^d$ and clusters k we want.

Output: group the data into k clusters, which means,

- find assignment $\gamma_{ij} \in \{0,1\}$ for each data point $i \in [n]$ and $j \in [k]$ s.t. $\sum_{j \in [k]} \gamma_{ij} = 1$ for any fixed i . each datapoint is assigned to exactly 1 cluster.
- ullet find the cluster centers $\mu_1,\cdots,\mu_k\in\mathbb{R}^d$.

Clustering is one of the most fundamental ML tasks, with many applications:

- recognize communities in a social network
- group similar customers in market research
- image segmentation
- accelerate other algorithms (e.g. nearest neighbor classification)

Formal Objective

As with PCA, no ground-truth to even measure the quality of the answer (no labels given).

What is the high-level goal here?

We want to partition the points into k clusters, such that points within each cluster are close to their cluster center.

We can turn this into an optimization problem, find γ_{ij} and μ_j to minimize

$$F(\gamma_{ij},\mu_j) = \sum_{i=1}^n \sum_{j=1}^k \gamma_{ij} ||x_i - \mu_j||_2^2$$

i.e. the sum of squared distances of each point to its center. This is the "k-means" objective.

Alternating minimization

Unfortunately, finding the exact minimizer of the k-means objective is NP-hard (we don't expect the problem to be exactly solvable efficiently and polynomial time)!

Therefore, we use a heuristic (alternating minimization) that alternatively minimizes over γ_{ij} and μ_j :

Initialize:
$$\mu_j^{(1)}: j \in [k]$$

For $t=1,2,\cdots$

find

$$\gamma_{ij}^{(t+1)} = rg\min_{\gamma_{ij}} F(\gamma_{ij}, \mu_j^{(t)})$$

this means fix μ_{ij} , find γ_j .

find

$$\mu_j^{(t+1)} = rg\min_{\mu_j} F(\gamma_{ij}^{(t+1)}, \mu_j)$$

this means fix γ_{ij} , find μ_j .

Alternating minimization: Closer look

The first step:

$$egin{aligned} \min_{\gamma_{ij}} F(\gamma_{ij}, \mu_j) &= \min_{\gamma_{ij}} \sum_i \sum_j \gamma_{ij} ||x_i - \mu_j||_2^2 \ &= \sum_i \min_{\gamma_{ij}} \sum_j \gamma_{ij} ||x_i - \mu_j||_2^2 \end{aligned}$$

is simply to assign each x_i to the closest μ_j , i.e.

$$\gamma_{ij} = \mathbb{I}[j == rg\min_{c \in [k]} ||x_i - \mu_c||_2^2]$$

 $\text{ for all } j \in [k] \text{ and } i \in [n]. \text{ This means } \begin{cases} 1, & \textit{if } j \textit{ is } minimizes \\ 0, & \textit{otherwise} \end{cases}.$

The second step

$$egin{aligned} \min_{\mu j} F(\gamma_{ij}, \mu_j) &= \min_{\gamma_{ij}} \sum_i \sum_j \gamma_{ij} ||x_i - \mu_j||_2^2 \ &= \sum_j \min_{\mu_j} \sum_{i: \gamma_{ij} = 1} ||x_i - \mu_j||_2^2 \end{aligned}$$

is simply to average the points of each cluster (hence the name)

$$\mu_j = rac{\sum_{i:\gamma_{ij}=1} x_i}{|i:\gamma_{ij}=1|} = rac{\sum_i \gamma_{ij} x_i}{\sum_i \gamma_{ij}}$$

for each $j \in [k]$. This is vectorized equation. verify: take gradients!

k-means algorithm

step 0: Initialize μ_1, \cdots, μ_k

step 1: For the centers μ_1, \cdots, μ_k being fixed, assign each point to the closest center:

$$\gamma_{ij} = \mathbb{I}[j == rg\min_{c \in [k]} ||x_i - \mu_c||_2^2]$$

step 2: For the assignments γ_{ij} being fixed, update the centers

$$\mu_j = rac{\sum_i \gamma_{ij} x_i}{\sum_i \gamma_{ij}}$$

step 3: Return to Step 1 if not converged (convergence means that all the assignments γ_{ij} are unchanged in Step 1).

k-means algorithm: convergence

k-means will converge in a finite number of iterations, why?

1. objective strictly decreases at each step if the algorithm has not converged.

Why? For $t=1,2,\cdots$

find

$$egin{aligned} \gamma_{ij}^{(t+1)} &= rg\min_{\gamma_{ij}} F(\gamma_{ij}, \mu_j^{(t)}) \ &= \mathbb{I}[j == rg\min_{c \in [k]} ||x_i - \mu_c||_2^2] \end{aligned}$$

this step will never increase objective function value. (as long as there are no ties, then it decreases function value)

find

$$\mu_j^{(t+1)} = rg\min_{\mu_j} F(\gamma_{ij}^{(t+1)}, \mu_j)$$

this step means if the assignments changed in the previous step, then this reduces its function value (mean is unique minimizer of sum of squares objective)

2.#possible assignments are finite (k^n , exponentially large though, k is the number of possible assignments to each point)

Therefore, the algorithm must converge in at most k^n steps.

Why? More specifically, why can't the algorithm cycle between different clusterings?

- ullet Suppose the algorithm finds the same clustering at time steps t_1 and t_2 .
- Since the objective function value decreases at every step, this means the same clustering (at time steps t_1 and t_2) has two different costs, which is not possible.

• Therefore, by contradiction, the algorithm cannot cycle between clusterings.

However,

- it could take exponentially many iterations to converge.
- and it might not converge to the global minimum of the k-means objective.

k-means algorithm: how to initialize?

There are different ways to initialize:

- ullet randomly pick k points as initial centers μ_1, \cdots, μ_k
- or randomly assign each point to a cluster, then average to find centers
- or more sophisticated approaches (e.g. k-means++)

Initialization matters for convergence.

k-means++ have different initialization: Assuming that n initial cluster centers have been selected, when selecting the n+1-th cluster center: we caculate the distance from every point to the n cluster center, and normalize it to probability. The more distant points from the current n cluster centers will have a higher probability of being selected as the n+1 cluster center.

Local vs Global minima

Simple example: 4 data points, 2 clusters, 2 different initializations:

K-means converges immediately in both cases, but

- ullet left has K-means objective $L^2=4W^2$.
- ullet right has K-means objective W^2 , $4\,\mathrm{times}$ better than left!
- in fact, left is local minimum, and right is global minimum.

As we increase L , we can make the local minima arbitrarily bad. \therefore Initialization matters a lot to convergence.

Summary

- Clustering is a fundamental unsupervised learning task.
- k-means is a alternating minimization algorithm for the k-means objective.
- The algorithm always converges, but it can converge to a local minimum.
- Initialization matters a lot for the convergence. There are principled initialization schemes, which have guarantees on the solution they find (e.g. k-means++).

Gaussian Mixture Model and EM Algorithm

Gaussian mixture models (GMM) is a probabilistic approach for clustering.

- more explanatory than minimizing the k-means objective.
- can be seen as a soft version of k-means.

To solve GMM, we will introduce a powerful method for learning probabilistic models: the Expectation Maximization (EM) algorithm.

For classification, we discussed the sigmoid model to "explain" how the labels are generated($\ln[y|x,w] = \sigma(yw^Tx)$).

Similarly, for clustering, we want to come up with a probabilistic(distribution) model p to "explain" how the data is generated.

That is, each point is an independent sample of $x \sim p$.

Why do generative modeling?

- can generate data from p
- can estimate probability of seeing any datapoint (useful for many tasks, such as for finding outliers/anomalies in data)

Intuition

GMM is a natural model to explain such data.

Assume there are 3 ground-truth Gaussian models. To generate a point, we

- first randomly pick one of the Gaussian models,
- then draw a point according this Gaussian.

Hence the name "Gaussian mixture model".

GMM: Formal definition

A GMM has the following density function:

$$p(x) = \sum_{j=1}^k \pi_j N(x|\mu_j, \Sigma_j)$$

where

- *k* : the number of Gaussian components (same as #clusters we want)
- π_1, \cdots, π_k : mixture weights, a distribution over k components. It means the probability of picking Gaussian j . and π_j need to meet $\sum_i \pi_j = 1$.
- μ_j and Σ_j : mean and covariance matrix of the k-th Gaussian
- ullet N: the density function for a Gaussian, means then we sample datapoints from Gaussian.

Another view:

by introducing a latent(unobserved) variable $z \in [k]$, which indicates cluster membership, we can see p as a marginal distribution

$$p(x) = \sum_{j=1}^k p(x,z=j) = \sum_{j=1}^k p(z=j) p(x|z=j) = \sum_{j=1}^k \pi_j N(x|\mu_j,\Sigma_j)$$

x and z are both random variables drawn from the model: x is observed; z is unobserved/latent.

An example:

homes are best on scaling

An example

The conditional distributions are

$$p(\boldsymbol{x} \mid z = \text{red}) = N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

$$p(\boldsymbol{x} \mid z = \text{blue}) = N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$p(\boldsymbol{x} \mid z = \text{green}) = N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

The marginal distribution is

$$\begin{split} p(\boldsymbol{x}) &= p(\text{red}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(\text{blue}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ &+ p(\text{green}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$

Learning GMMs

Learning a GMM means finding all the parameters $heta = \{\pi_j, \mu_j, \Sigma_j\}_{j=1}^k$.

In the process, we will learn the distribution of the latent variable z_i as well:

$$p(z_i=j|x_i):=\gamma_{ij}\in[0,1]$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by k-means (all $\gamma_{ij}=\{0,1\}$).

GMM is more explanatory than k-means

- both learn the cluster centers μ_i 's.
- ullet in addition, GMM learns cluster weight π_j and covariance Σ_j , thus
 - o we can predict probability of seeing a new point
 - we can generate synthetic data

As always, we want to do maximum-likelihood estimation (MLE): use log-likelihood of data, to find

$$rg \max_{ heta} \ln \prod_{i=1}^n p(x_i; heta) = rg \max_{ heta} \sum_{i=1}^n \ln p(x_i; heta) := rg \max_{ heta} P(heta)$$

This is called incomplete log-likelihood (since z_i 's are unobserved). We can still write it down as an optimization problem by marginalizing out the z_i 's.

$$egin{aligned} P(heta) &= \sum_{i=1}^n \ln p(x_i; heta) = \sum_{i=1}^n \ln \left(\sum_{j=1}^k p(x_i, z_i = j; heta)
ight) \ &= \sum_{i=1}^n \ln \left(\sum_{j=1}^k p(z_i = j; heta) p(x_i | z_i = j; heta)
ight) = \sum_{i=1}^n \ln \left(\sum_{j=1}^k \pi_j N(x_i | \mu_j, \Sigma_j)
ight) \end{aligned}$$

This is a non-concave problem, and does not have a closed-form solution.

One solution is to still apply GD/SGD, but a much more effective approach is the Expectation Maximization (EM) algorithm.

Preview of EM for learning GMMs

step 0: Initialize π_j, μ_j, Σ_j for each $j \in [k]$.

step 1: (E-Step) update the "soft assignment" (fixing parameters), priors \times likelihood:

$$\gamma_{ij} = p(z_i = j|x_i) \propto \pi_j N(x_i|\mu_j, \Sigma_j)$$

step 2: (M-Step) update the model parameter (fixing assignments):

$$egin{aligned} \pi_j &= rac{\sum_i \gamma_{ij}}{n} & \mu_j &= rac{\sum_i \gamma_{ij} x_i}{\sum_i \gamma_{ij}} \ \Sigma_j &= rac{1}{\sum_i \gamma_{ij}} \sum_i \gamma_{ij} (x_i - \mu_i) (x_i - \mu_j)^T \end{aligned}$$

step 3: return to Step 1 if not converged.

EM Algorithm

In general, EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(heta) = \sum_{i=1}^n \ln p(x_i; heta) = \sum_{i=1}^n \ln \int_{z_i} p(x_i, z_i; heta) \mathrm{d}z_i$$

- $\theta = \{\mu_j, \Sigma_j, \pi_j\}$ is the parameters for a general probabilistic model.
- x_i 's are observed random variables.
- ullet z_i 's are latent variables. If continuous, integral z_i , otherwise sum z_i .

Again, directly solving the objective is usually complicated and does not have a closed form solution.

High-level idea: Keep maximizing a lower bound of P that is more manageable.

Jensen's inequality

For any x and convex function f(x) , $f(E(x)) \leqslant E(f(x))$

e.g. $f(x)=x^2$, then $(E(x))^2\leqslant E(x^2)$. This is correct since $Var(x)=E(x^2)-(E(x))^2\geqslant 0$.

$$|E(f(4))| = f(4) + f(4)$$

$$|E(f(4))| = f(4) + f(4)$$

$$|X = \begin{cases} X_1, w_1, 0.5 \\ + 2, w_2, 0.5 \end{cases}$$

Equal Condition: function f if f(x) is strictly convex ($f''(x)>0, \forall x$), then $f(E(x))=E(f(x))\Rightarrow x$ is a constant(x=c for some c , x always $=\{x_1,x_2\}$ for the exp above)

A lower bound on the log likelihood

Introducing ${\cal P}$, and finding the lower bound of ${\cal P}$

$$egin{aligned} P(heta) &= \sum_{i=1}^n \ln p(x_i; heta) \ \ln p(x; heta) &= \ln \left(\sum_{z=1}^k p(x, z = j; heta)
ight) \ &= \ln \left(\sum_{z=1}^k q(z) rac{p(x, z; heta)}{q(z)}
ight) \qquad true \ for \ any \ q(z)
eq 0 \ (we \ also \ impose \ \sum_{z=1}^k q(z) = 1) \ &= \ln \left(\sum_{z=1}^k \mathbb{E}_{z \sim q(z)} rac{p(x, z; heta)}{q(z)}
ight) \qquad o \mathbb{E}_{z \sim q(z)} (f(z)) = \sum_z q(z) f(z) \ &\geqslant \mathbb{E}_{z \sim q(z)} \left[\ln \left(rac{p(x, z; heta)}{q(z)}
ight)
ight] \qquad oppsite \ of \ Jensen(since \ ln(\cdot) \ is \ concave) \end{aligned}$$

Therefore, our log-likelihood can be written as

$$egin{aligned} P(heta) &= \sum_{i=1}^n \ln p(x_i; heta) \geqslant \sum_{i=1}^n \mathbb{E}_{z_i \sim q(z_i)} \left[\ln \left(rac{p(x_i, z_i; heta)}{q_i(z_i)}
ight)
ight] \ &= F(heta, \{q_i\}_{i=1}^n) \end{aligned}$$

where $ln\left(rac{p(x_i,z_i; heta)}{q_i(z_i)}
ight)$ is the lower bound for any $\{q_i\}_{i=1}^n$.

Alternatively maximizing the lower bound

The expression for the likelihood holds for any $\{q_i\}$, so how do we choose? If we have some guess of the parameters θ , we should choose $\{q_i\}$ to try to make the lower bound tight at that value of θ , i.e. make the inequality hold with equality at that value of θ .

Equivalently, this is the same as alternatingly maximizing F over $\{q_i\}$ and θ (similar to k-means).

Maximizing over q_i : Suppose we fix $\theta^{(t)}$, what should we choose $q_i^{(t)}$?

The inequality arises from the step where we used Jensen's inequality. How do we get this step to hold with equality ($\sum_{i=1}^n \ln p(x_i;\theta) = \sum_{i=1}^n \mathbb{E}_{z_i \sim q(z_i)} \left[\ln \left(\frac{p(x_i,z_i;\theta)}{q_i(z_i)} \right) \right] \text{)?}$

The function should be a constant function, i.e.

$$rac{p(x_i,z_i; heta)}{q_i(z_i)}=c_i$$

for some constant c_i which does not depend on the value taken by the random variable z_i .

since
$$\sum_{z_i=1}^k q_i^{(t)}(z_i)=1$$
 , we get,

$$c_i = \sum_{z_i=1}^k p(x_i, z_i; heta)$$

Therefore:

$$egin{aligned} q_i^{(t)}(z_i) &= rac{p(x_i, z_i; heta^{(t)})}{\sum_{z_i=1}^k p(x_i, z_i; heta^{(t)})} \ &= rac{p(x_i, z_i; heta^{(t)})}{p(x_i; heta)} \ &= p(z_i | x_i; heta^{(t)}) \end{aligned}$$

i.e., the posterior distribution of z_i given x_i and $\theta^{(t)}$.

So at $\theta^{(t)}$, we found the tightest lower bound $F(\theta,q_i^{(t)})$:

$$\begin{split} \bullet & F(\theta, q_i^{(t)}) \leqslant P(\theta) \text{ for all } \theta \\ \bullet & F(\theta^{(t)}, q_i^{(t)}) = P(\theta^{(t)}) \end{split}$$

$$ullet$$
 $F(heta^{(t)},q_i^{(t)})=P(heta^{(t)})$

Maximizing over θ : Fix $q_i^{(t)}$, maximize over θ

$$\begin{split} & \arg\max_{\theta} F(\theta, q_i^{(t)}) \\ & = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln\left(\frac{p(x_i, z_i; \theta)}{q_i^{(t)}(z_i)}\right) \right] \\ & = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln p(x_i, z_i; \theta) \right] - \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln (q_i^{(t)}(z_i)) \right] \quad \left(\mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln (q_i^{(t)}(z_i)) \right] \, does \, not \, depend \, on \, \theta, we've \, fixed \, q_i^{(t)}) \\ & = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln p(x_i, z_i; \theta) \right] \\ & := \arg\max_{\theta} Q(\theta; \theta^{(t)}) \end{split}$$

Q is the (expected) complete likelihood and is usually more tractable. $\theta^{(t)}$ is what we get , θ is what we need to find.

• $Q(\theta; \theta^{(t)})$ versus the incomplete likelihood: $P(\theta) = \sum_{i=1}^n \ln p(x_i; \theta)$.

General EM algorithm

step 0: Initialize $\theta^{(1)}, t=1$.

step 1: (E-Step) update the posterior of latent variables z_i :

$$q_i^{(t)}(z_i) = p(z_i|x_i; heta^{(t)})$$

and obtain Expectation of complete likelihood:

$$Q(heta; heta^{(t)}) = \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln p(x_i, z_i; heta)
ight]$$

step 2: (M-Step) update the model parameter via Maximization:

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} Q(\theta; \theta^{(t)})$$

step 3: $t \leftarrow t+1$ and return to Step 1 if not converged.

Pictorial explanation:

 $P(\boldsymbol{\theta})$ is non-concave, but $Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$ often is concave and easy to maximize.

examine.
$$P(\boldsymbol{\theta}^{(t+1)}) \geq F\left(\boldsymbol{\theta}^{(t+1)}; \{q_i^{(t)}\}\right)$$

$$P(\boldsymbol{\theta}^{(t+1)}) \geq F\left(\boldsymbol{\theta}^{(t)}; \{q_i^{(t)}\}\right)$$

$$P(\boldsymbol{\theta}^{(t)}) \leq P(\boldsymbol{\theta}^{(t)})$$

So EM always increases the objective value and will converge to some local maximum (similar to k-means).

Applying EM to learn GMMs

E-Step:

$$\begin{split} q_i^{(t)}(z_i = j) &= p(z_i = j | x_i; \theta^{(t)}) \\ &= \frac{p(x_i, z_i = j; \theta^{(t)})}{p(x_i; \theta^{(t)})} \qquad p(x_i; \theta^{(t)}) \ not \ depend \ on \ j \\ &\propto p(x_i, z_i = j; \theta^{(t)}) \\ &= p(z_i = j; \theta^{(t)}) p(x_i | z_i = j; \theta^{(t)}) \\ &= \pi_j^{(t)} N(x_i | \mu_j^{(t)}, \Sigma_j^{(t)}) \end{split}$$

This computes the "soft assignment" $\gamma_{ij}=q_i^{(t)}(z_i=j)$, i.e. conditional probability of x_i belonging to cluster j .

M-Step:

$$egin{aligned} rg \max_{ heta} Q(heta; heta^{(t)}) &= rg \max_{ heta} \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln p(x_i, z_i; heta)
ight] \ &= rg \max_{ heta} \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln p(z_i; heta) + \ln p(x_i | z_i; heta)
ight] \ &= rg \max_{\{\pi_j, \mu_j, \Sigma_j\}} \sum_{i=1}^n \sum_{j=1}^k \gamma_{ij} \left(\ln \pi_j + \ln N(x_i | \mu_j, \Sigma_j)
ight) \end{aligned}$$

 $\gamma_{ij} \ln \pi_j$ only depends on π_j , $\gamma_{ij} \ln N(x_i | \mu_j, \Sigma_j)$ only depends on μ_j, Σ_j .

To find π_1, \cdots, π_k , solve

$$\arg\max_{\pi} \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij} \ln \pi_{j}$$

To find each μ_j, Σ_j , solve

$$rg \max_{\mu_j, \Sigma_j} \sum_{i=1}^n \gamma_{ij} \ln N(x_i | \mu_j, \Sigma_j)$$

Solutions to previous two problems are very natural, for each j

$$\pi_j = rac{\sum_i \gamma_{ij}}{n}$$

i.e. (weighted) fraction of examples belonging to cluster j

$$\mu_j = rac{\sum_i \gamma_{ij} x_i}{\sum_i \gamma_{ij}}$$

i.e. (weighted) average of examples belonging to cluster j

$$\Sigma_j = rac{1}{\sum_i \gamma_{ij}} \sum_i \gamma_{ij} (x_i - \mu_j) (x_i - \mu_j)^T$$

i.e (weighted) covariance of examples belonging to cluster j

Putting it together: EM for learning GMMs

step 0: Initialize π_j, μ_j, Σ_j for each $j \in [k]$.

step 1: (E-Step) update the "soft assignment" (fixing parameters):

$$\gamma_{ij} = p(z_i = j|x_i) \propto \pi_j N(x_i|\mu_j, \Sigma_j)$$

step 2: (M-Step) update the model parameter (fixing assignments):

$$\pi_j = rac{\sum_i \gamma_{ij}}{n} \quad \mu_j = rac{\sum_i \gamma_{ij} x_i}{\sum_i \gamma_{ij}} \quad \Sigma_j = rac{1}{\sum_i \gamma_{ij}} \sum_i \gamma_{ij} (x_i - \mu_j) (x_i - \mu_j)^T$$

step 3: return to step 1 if not converged.