Lecture 10

Lecture 10

Clustering
Informal definition
Formal Objective
Alternating minimization
Alternating minimization: Closer look
k-means algorithm
k-means algorithm: convergence
k-means algorithm: how to initialize?
Local vs Global minima
Summary

Gaussian Mixture Model and EM Algorithm
Intuition
GMM: Formal definition
Learning GMMs
Preview of EM for learning GMMs
EM Algorithm
Jensen's inequality
A lower bound on the log likelihood
Alternatively maximizing the lower bound
General EM algorithm
Applying EM to learn GMMs

Clustering

Informal definition

Given: a set of data points (feature vectors), without labels.
Output: group the data into some clusters, which means

e assign each point to a specific cluster
e find the center (representative/prototype/...) of each cluster

Given: data points 1, - - -, ¢, € R? and clusters k we want.
Output: group the data into k clusters, which means,

e find assignment ;; € {0, 1} for each data point ¢ € [n] and j € [k]s.t. Eje[k] 7ij = 1 for any fixed ¢ . each datapoint is assigned to
exactly 1 cluster.
e find the cluster centers fy, -+, ur € R?.

2 0 2 -2 0 2

Clustering is one of the most fundamental ML tasks, with many applications:

recognize communities in a social network

group similar customers in market research

image segmentation

accelerate other algorithms (e.g. nearest neighbor classification)

Formal Objective

As with PCA, no ground-truth to even measure the quality of the answer (no labels given).

What is the high-level goal here?

We want to partition the points into k clusters, such that points within each cluster are close to their cluster center.

We can turn this into an optimization problem, find ;; and p; to minimize
n k
— 2
F(vij, p5) = Yijllwi — il
i=1 j=1
i.e. the sum of squared distances of each point to its center. This is the "k-means" objective.

Alternating minimization

Unfortunately, finding the exact minimizer of the k-means objective is NP-hard (we don't expect the problem to be exactly solvable efficiently
and polynomial time)!

Therefore, we use a heuristic (alternating minimization) that alternatively minimizes over <y;; and p; :

Initialize: ,u§1) 1j € [k

Fort=1,2,.--
e find
t+1 . t
7 = arg min F(73; pi)
ij
this means fix ;5 , find 7y; .
e find
t+1 . t+1
plV = argmin F(y ™,)

Hi

this means fix ;5 , find g .

Alternating minimization: Closer look

The first step:
min F(yij, 1) = min > > | yigll: = sl [3
ij i
= ng_inZ’mei — uill3
i E
is simply to assign each x; to the closest u; , i.e.

Yij =]I[] == arg min ||$1 - Uc“%]
celk]
i € (] and s Thi 1, ifjis minimizes
orallj € [k] and ¢ € [n]. This means 0, otherwise

The second step
min F(7ij, 1;) = min > Y iille — wll3
i

. 2

= min Y lzi — pyll3

—~ py =
J iyi=1

is simply to average the points of each cluster (hence the name)

Zmﬁzl i > i VijTi

iy =11 X

,Uj:|

for each j € [k] . This is vectorized equation. verify: take gradients!
k-means algorithm

step 0: Initialize o1, - - -, pg

step 1: For the centers u1, - - -, ptx, being fixed, assign each point to the closest center:
. . 2
vij = I[j == argmin [lz; — pc|[3]
celk]

step 2: For the assignments 7;; being fixed, update the centers

1= > Viji
! 2 Vi

step 3: Return to Step 1 if not converged (convergence means that all the assignments ;5 are unchanged in Step 1).

200, %
%"
-2

-2

k-means algorithm: convergence
k-means will converge in a finite number of iterations, why?

1.objective strictly decreases at each step if the algorithm has not converged.

Why? Fort =1,2,---

e find
t+1 . t
vy = argmin F(yy, 1)
ij
= I[j == argmin |[z; — pc||3]
ce[k]

this step will never increase objective function value. (as long as there are no ties, then it decreases function value)

e find

t+1 . t+1
bty = argrrllénF(vff) 1)

this step means if the assignments changed in the previous step, then this reduces its function value (mean is unique minimizer of sum
of squares objective)

2.#possible assignments are finite (K", exponentially large though, k is the number of possible assignments to each point)

Therefore, the algorithm must converge in at most k™ steps.

Why? More specifically, why can't the algorithm cycle between different clusterings?

e Suppose the algorithm finds the same clustering at time steps ¢; and ¢o .

e Since the objective function value decreases at every step, this means the same clustering (at time steps ¢ and t5) has two different
costs, which is not possible.

e Therefore, by contradiction, the algorithm cannot cycle between clusterings.
However,

e it could take exponentially many iterations to converge.
® and it might not converge to the global minimum of the k-means objective.

k-means algorithm: how to initialize?

There are different ways to initialize:

e randomly pick k points as initial centers piq, - - -, g
e or randomly assign each point to a cluster, then average to find centers
e or more sophisticated approaches (e.g. k-means++)

Initialization matters for convergence.

k-means++ have different initialization: Assuming that n initial cluster centers have been selected, when selecting the n + 1-th cluster center:
we caculate the distance from every point to the n cluster center, and normalize it to probability. The more distant points from the currentn
cluster centers will have a higher probability of being selected as the n + 1 cluster center.

Local vs Global minima

Simple example: 4 data points, 2 clusters, 2 different initializations:

K-means converges immediately in both cases, but

e left has K-means objective L2 = 4W 2.
e right has K-means objective W2 , 4 times better than left!
® in fact, leftis local minimum, and right is global minimum.

As we increase L, we can make the local minima arbitrarily bad. .". Initialization matters a lot to convergence.
Summary

e (lustering is a fundamental unsupervised learning task.

e k-means is a alternating minimization algorithm for the k-means objective.

e The algorithm always converges, but it can converge to a local minimum.

e |nitialization matters a lot for the convergence. There are principled initialization schemes, which have guarantees on the solution they
find (e.g. k-means++).

Gaussian Mixture Model and EM Algorithm

Gaussian mixture models (GMM) is a probabilistic approach for clustering.

e more explanatory than minimizing the k-means objective.
® can be seen as a soft version of k-means.

To solve GMM, we will introduce a powerful method for learning probabilistic models: the Expectation Maximization (EM) algorithm.

For classification, we discussed the sigmoid model to “explain” how the labels are generated(In[y|z, w] = o(yw’z)).
Similarly, for clustering, we want to come up with a probabilistic(distribution) model p to “explain” how the data is generated.
That is, each pointis an independent sample of z ~ p.

Why do generative modeling?

® can generate data from p
e can estimate probability of seeing any datapoint (useful for many tasks, such as for finding outliers/anomalies in data)

Intuition
GMM is a natural model to explain such data.
Assume there are 3 ground-truth Gaussian models. To generate a point, we

e first randomly pick one of the Gaussian models,
e then draw a point according this Gaussian.

Hence the name "Gaussian mixture model".
GMM: Formal definition

A GMM has the following density function:
k
p(z) =Y m;N(z|n; ;)
j=1

where

k : the number of Gaussian components (same as #clusters we want)
1, -+, Tk - Mixture weights, a distribution over k components. It means the probability of picking Gaussian j . and m; need to meet

Zﬂ'jz]..
J

pj and X; : mean and covariance matrix of the k-th Gaussian
e N:the density function for a Gaussian, means then we sample datapoints from Gaussian.

Another view:
by introducing a latent(unobserved) variable z € [k], which indicates cluster membership, we can see p as a marginal distribution

k k

k
p(z) = Zp(w, z=j) = Zp(z = j)p(z|z = j) = ZﬂjN(w\u]—v ;)

x and z are both random variables drawn from the model: x is observed; z is unobserved/latent.

An example:

n
" \“‘“w An example

The conditional distributions are

p(x | z=red) = N(z | py, %1)
p(x | z =Dblue) = N(z | py, X2)
p(x | z = green) = N (x| p1g, 35)

! The marginal distribution is

0.5

p(x) = p(red) N(z | py,31) + p(blue) N (z | po, X2)
+ p(green) V(x| p15, 333)

Learning GMMs
Learning a GMM means finding all the parameters 6 = {7rj, i Ej}?zl .
In the process, we will learn the distribution of the latent variable z; as well:
p(zi = jlz;) :== vi; € [0, 1]
i.e. "soft assignment" of each point to each cluster, as opposed to “hard assignment” by k-means (all y;; = {0,1}).
GMM is more explanatory than k-means

e both learn the cluster centers p;'s.
® in addition, GMM learns cluster weight 7r; and covariance XJ;, thus

o we can predict probability of seeing a new point
o we can generate synthetic data

As always, we want to do maximume-likelihood estimation (MLE): use log-likelihood of data, to find

n n

arg max In gp(xi; 0) = arg max ; Inp(z;;0) := arg max P(6)

This is called incomplete log-likelihood (since z; ‘s are unobserved). We can still write it down as an optimization problem by marginalizing
out the z; 's.

n n k
P() =) Inp(z;0) =) In (Zp(m@-,z,- = j; 0))
=1 =1 =1
n k n k
= Zln (Zp(zi = 7;0)p(z;|z; = j; 0)) = Zln (Z Ter(:ci‘,uj,Ej)>

j=

This is @ non-concave problem, and does not have a closed-form solution.
One solution is to still apply GD/SGD, but a much more effective approach is the Expectation Maximization (EM) algorithm.
Preview of EM for learning GMMs
step 0: Initialize ;, p, ¥ for each j € [k] .
step 1: (E-Step) update the “soft assignment” (fixing parameters), priors X likelihood:
Yij = p(zi = jlwi) o< mpN (i),)
step 2: (M-Step) update the model parameter (fixing assignments):

22 Vij 20 VijTi

n 2 Vi
1
Y= Vij(wi — pa) (@i —)"
$= 5 2w k))

step 3: return to Step 1 if not converged.
EM Algorithm

In general, EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of
n n
P(6) = > ap(eii6) = > oo [plas 560
i=1 =1 Zi

o (= {,uj, X, 7rj} is the parameters for a general probabilistic model.
® 1, 's are observed random variables.
® 2, 'sarelatentvariables. If continuous, integral z; , otherwise sum z; .

Again, directly solving the objective is usually complicated and does not have a closed form solution.

High-level idea: Keep maximizing a lower bound of P that is more manageable.

git-2)

Jensen's inequality
For any z and convex function f(z), f(E(z)) < E(f(z))

eg. f(z) = z2, then (E(z))? < E(x?) . This s correct since Var(z) = E(z?) — (E(z))? > 0.

BUEE = £ ¢ g
z r %

~
-
P

......................

L

[T HUEW) XK= (X

) u)-f. 0-5

e’ 4
"‘ ‘.E('{’j .Lz 7/ wc' O'S’

Equal Condition: function fif f(z)is strictly convex (f”(z) > 0,Vz), then f(E(z)) = E(f(z)) =
x is a constant(z = ¢ for some ¢, x always = {21, 2} for the exp above)
A lower bound on the log likelihood
Introducing P, and finding the lower bound of P
P(9) = > Inp(;;6)
i—1
k
lnp(:r, 0) - ln <ZP($, 2=1] 0))
2z=1
k k
120
=In (Z q(z)%) true for any q(z) # 0 (we also impose Zq(z) =1)
z=1 q\z z=1

=In (Z Eu%) = By (f(2)) = Y a(2)£(2)

z

;0
> E.) [ln (m>] oppsite of Jensen(since In(-) is concave)

Therefore, our log-likelihood can be written as

- = iy 25 0
P(9) = Z Inp(zi;0) > > E.. g [ln (M)}
i=1 i—1 ai(2:)
= F(6,{q:}i-)
where ln (%) is the lower bound for any {g;}? ;.
Alternatively maximizing the lower bound

The expression for the likelihood holds for any {¢; } , so how do we choose? If we have some guess of the parameters 6, we should choose
{¢i} to try to make the lower bound tight at that value of §, i.e. make the inequality hold with equality at that value of 6.

e(a _ F (07

Equivalently, this is the same as alternatingly maximizing F' over {g; } and 6 (similar to k-means).

Maximizing over g; : Suppose we fix 6 , what should we choose qi(t) ?

The inequality arises from the step where we used Jensen’s inequality. How do we get this step to hold with equality (
i,2i30
S (@i 0) = S0 Eagiey [In (22252)] 2
The function should be a constant function, i.e.
p(zi, 2i;0)
_ = ci
qi(zi)

for some constant c¢; which does not depend on the value taken by the random variable z; .

since leizl qi(t)(zi) =1, we get,

Therefore:

P(wi, 255 e(t))
i plwi, 2i;60)
p(xi, 2;0Y)

p(z;0)
= p(zi|z:;60Y)

i.e., the posterior distribution of z; given x; and 6t

So at), we found the tightest lower bound F'(6), qi(t)) :

e F(6,q") < P(6)forall

o F(01,q") = P(eW)

i
Maximizin :Fixg? imi
g over @ : Fixg;,” , maximize over

arg max F(6, qi(t))

:B Zis
Z7 Z?
= argmax E]E " i(t) ln

= arg maxz E lnp(a:l, zi;0)] - E_ gt [ln(qi(t)(zi))] (Ezwagn [ln(qi(t)(zi))] does not depend on 0, we've fized g,

= argmaxZE lnp(:cl, 2;;0)]
= argmng(O;Q)

Q is the (expected) complete likelihood and is usually more tractable. 8®) is what we get , 6 is what we need to find.
o Q(6;6") versus the incomplete likelihood: P(8) = 3.7 Inp(z;6) .

General EM algorithm

step 0: Initialize 8, ¢t = 1.

step 1: (E-Step) update the posterior of latent variables z; :

¢
0(z:) = p(zlai;0)
and obtain Expectation of complete likelihood:

n
Q8:;0) =Y E, o Mmp(z;,z;0)]
i=1 '

step 2: (M-Step) update the model parameter via Maximization:

00+ « arg max Q(6;0Y)

step 3: ¢ <= ¢t + 1 and return to Step 1 if not converged.

Pictorial explanation:

P(8) is non-concave, but Q(6; 8*)) often is concave and easy
to maximize.

cfwun a lowan bouv

P(e““’)@{(om” 1a})
CRORT (‘@F 9(” {qz(t)})
b

So EM always increases the objective value and will converge
to some local maximum (similar to k-means).

F(6,{4"})

()

7

)

Applying EM to learn GMMs

E-Step:

= p(z; = jlzs; 0)
p(zi, 2z = 5;00)

= :vi;(?(t) not depend on j
(i 00) p() P j

=)
—~

N
.

I
<
~

I

p(zi, 2 = §;0Y)
= p(z; = 5;09)p(zi|2; = j; 6))
=

ON(zilpl, 5))

K

This computes the "soft assignment” y;; = qi(t)(zi = j), i.e. conditional probability of z; belonging to cluster j .

M-Step:

0' 6 =]E 1 19 19 0
arg max Q(6; = arg maxz Inp(z;, 2;:;0))
= argmax Z E o [Inp(z;0) + Inp(x;|z;6))

= arg max ZZ%] (In7; + In N(z;|pj, ;)
{785} i=1 j=

7vij In 7; only depends on ;, ;5 In N (z; |5, £ ;) only depends on 1,3 .
Tofindmy, -, Tk, Solve
argmaxz Z%J In7;
i=1 j=

To find each p;, %, solve

argmaxZ’yzjlnN(mzmj,)
R

Solutions to previous two problems are very natural, for each j

i.e. (weighted) fraction of examples belonging to cluster j

;= > YigTi
T Y

i.e. (weighted) average of examples belonging to cluster j

1
Y= vij (@i — pg) (@i — pg)"
J Zi'yijz J(J)(J)

i

i.e (weighted) covariance of examples belonging to cluster j
Putting it together: EM for learning GMMs
step O: Initialize 7, p;, X for each j € [k] .
step 1: (E-Step) update the "soft assignment" (fixing parameters):
Yij = p(zi = jla:) o< mpN (@i|pj, 5j)

step 2: (M-Step) update the model parameter (fixing assignments):

> Vi > i YigTi 1 T
= — E:’Y"ﬂv'—ﬂ' Ti—
n ! > i ’ YivYii 5 (@i)@ i)

step 3: return to step 1 if not converged.

	Lecture 10
	Clustering
	Informal definition
	Formal Objective
	Alternating minimization
	Alternating minimization: Closer look
	k-means algorithm
	k-means algorithm: convergence
	k-means algorithm: how to initialize?
	Local vs Global minima
	Summary

	Gaussian Mixture Model and EM Algorithm
	Intuition
	GMM: Formal definition
	Learning GMMs
	Preview of EM for learning GMMs
	EM Algorithm
	Jensen's inequality
	A lower bound on the log likelihood
	Alternatively maximizing the lower bound
	General EM algorithm
	Applying EM to learn GMMs

